On the relation between charge and topology

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1978 J. Phys. A: Math. Gen. 11795
(http://iopscience.iop.org/0305-4470/11/4/522)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 18:50

Please note that terms and conditions apply.

Corrigenda

Quantised fields over de Sitter space

Grensing G 1977 J. Phys. A: Math. Gen. 10 1687-719
On p 1688 formula (2.4) should read

$$
\begin{equation*}
g^{\dagger} E g=E \quad g^{\mathrm{T}} E^{\prime} g=E^{\prime} \tag{2.4}
\end{equation*}
$$

and on $p 1708$ formula (9.11) should read

$$
\begin{align*}
& \Delta^{-}\left(z_{1}, z_{2}\right)=\frac{1}{2} \mathrm{i}(2 \pi)^{-\frac{1}{2} d} \Gamma\left(\frac{1}{2}(d-1)+\mathrm{i} \rho\right) \Gamma\left(\frac{1}{2}(d-1)-\mathrm{i} \rho\right) \\
& \times\left[\left(p_{12}\right)^{2}-1\right]^{-1(d-2)} P_{-\frac{1}{2}+\mathrm{i} \rho}^{-\frac{1}{4}(d-2)}\left(-p_{12}(\epsilon)\right) . \tag{9.11}
\end{align*}
$$

Furthermore, formula (11.16) on $p 1713$ should be replaced by

$$
\begin{gather*}
-2 \lambda_{\mathrm{R}}=-2 \lambda+\frac{1}{2}\left(\frac{m^{2}}{4 \pi}\right)^{\omega} \frac{J_{0}(\omega)}{\omega} \tag{11.16}\\
-2 \omega(2 \omega-1)\left(16 \pi G_{\mathrm{R}}\right)^{-1}=-2 \omega(\omega-1)(16 \pi G)^{-1}+\frac{1}{2 m^{2}}\left(\frac{m^{2}}{4 \pi}\right) \frac{\omega J_{1}(\omega)}{\omega-1}
\end{gather*}
$$

and on p 1717 formula (A.29) by

$$
\begin{equation*}
\tilde{\rho}_{\mathrm{I}}(\dot{g})=\stackrel{g}{g}^{\prime}=\tilde{\rho}_{\mathrm{PT}}^{\prime}(\dot{g}), \quad \tilde{\rho}_{\mathrm{P}}^{\prime}(\dot{g})=\dot{g}^{\dagger-1}=\tilde{\rho}_{\mathrm{T}}^{\prime}(\dot{g}) . \tag{A.29}
\end{equation*}
$$

On the relation between charge and topology

Sorking R 1977 J. Phys. A: Math. Gen. 10 717-25
The third sentence of the second footnote on page 722 should be deleted. Since in § 4 $\mathscr{F}^{\mu \nu}$ is being treated as axial, the induced H-tensor \mathbb{E} is well defined (as an axial vector density) independently of any external orientation for H. (Proof. It is the H-dual of the pullback to H of the M-dual of $\mathscr{F}^{\mu \nu}$.) It is only for polar $\mathscr{F}^{\mu \nu}$ that \mathbb{E} is what one might call 'externally axial'.

